Copied to
clipboard

G = C2xC32:S4order 432 = 24·33

Direct product of C2 and C32:S4

direct product, non-abelian, soluble, monomial

Aliases: C2xC32:S4, C62:15D6, (C3xC6):2S4, (C6xA4):1S3, (C3xA4):2D6, (C2xC62):5S3, C32:3(C2xS4), C6.13(C3:S4), C32:A4:3C22, C23:(He3:C2), C3.3(C2xC3:S4), (C2xC32:A4):2C2, C22:(C2xHe3:C2), (C22xC6).2(C3:S3), (C2xC6).1(C2xC3:S3), SmallGroup(432,538)

Series: Derived Chief Lower central Upper central

C1C2xC6C32:A4 — C2xC32:S4
C1C22C2xC6C62C32:A4C32:S4 — C2xC32:S4
C32:A4 — C2xC32:S4
C1C6

Generators and relations for C2xC32:S4
 G = < a,b,c,d,e | a2=b6=c6=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b4c, ebe=b2c3, dcd-1=b3c, ece=b3c4, ede=d-1 >

Subgroups: 967 in 166 conjugacy classes, 23 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, C32, Dic3, C12, A4, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3xC6, C3xC6, C2xDic3, C3:D4, C2xC12, C3xD4, S4, C2xA4, C22xS3, C22xC6, C22xC6, He3, C3xDic3, C3xA4, S3xC6, C62, C62, C2xC3:D4, C6xD4, C2xS4, He3:C2, C2xHe3, C6xDic3, C3xC3:D4, C3xS4, C6xA4, S3xC2xC6, C2xC62, C32:A4, C2xHe3:C2, C6xC3:D4, C6xS4, C32:S4, C2xC32:A4, C2xC32:S4
Quotients: C1, C2, C22, S3, D6, C3:S3, S4, C2xC3:S3, C2xS4, He3:C2, C3:S4, C2xHe3:C2, C2xC3:S4, C32:S4, C2xC32:S4

Permutation representations of C2xC32:S4
On 18 points - transitive group 18T156
Generators in S18
(1 2)(3 4)(5 6)(7 12)(8 10)(9 11)(13 16)(14 17)(15 18)
(1 2)(3 4)(5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)
(1 4 5 2 3 6)(7 11 8 12 9 10)(13 17 15)(14 18 16)
(1 13 7)(2 16 12)(3 17 9)(4 14 11)(5 15 8)(6 18 10)
(7 13)(8 15)(9 17)(10 18)(11 14)(12 16)

G:=sub<Sym(18)| (1,2)(3,4)(5,6)(7,12)(8,10)(9,11)(13,16)(14,17)(15,18), (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,4,5,2,3,6)(7,11,8,12,9,10)(13,17,15)(14,18,16), (1,13,7)(2,16,12)(3,17,9)(4,14,11)(5,15,8)(6,18,10), (7,13)(8,15)(9,17)(10,18)(11,14)(12,16)>;

G:=Group( (1,2)(3,4)(5,6)(7,12)(8,10)(9,11)(13,16)(14,17)(15,18), (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,4,5,2,3,6)(7,11,8,12,9,10)(13,17,15)(14,18,16), (1,13,7)(2,16,12)(3,17,9)(4,14,11)(5,15,8)(6,18,10), (7,13)(8,15)(9,17)(10,18)(11,14)(12,16) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11),(13,16),(14,17),(15,18)], [(1,2),(3,4),(5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18)], [(1,4,5,2,3,6),(7,11,8,12,9,10),(13,17,15),(14,18,16)], [(1,13,7),(2,16,12),(3,17,9),(4,14,11),(5,15,8),(6,18,10)], [(7,13),(8,15),(9,17),(10,18),(11,14),(12,16)]])

G:=TransitiveGroup(18,156);

38 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E3F4A4B6A6B6C6D6E6F6G···6M6N6O6P6Q6R6S6T12A12B12C12D
order122222333333446666666···6666666612121212
size1133181811624242418181133336···61818181824242418181818

38 irreducible representations

dim11122223333336666
type+++++++++++
imageC1C2C2S3S3D6D6S4C2xS4He3:C2C2xHe3:C2C32:S4C2xC32:S4C3:S4C2xC3:S4C32:S4C2xC32:S4
kernelC2xC32:S4C32:S4C2xC32:A4C6xA4C2xC62C3xA4C62C3xC6C32C23C22C2C1C6C3C2C1
# reps12131312244441122

Matrix representation of C2xC32:S4 in GL3(F7) generated by

600
060
006
,
433
110
413
,
161
632
241
,
541
606
442
,
105
015
006
G:=sub<GL(3,GF(7))| [6,0,0,0,6,0,0,0,6],[4,1,4,3,1,1,3,0,3],[1,6,2,6,3,4,1,2,1],[5,6,4,4,0,4,1,6,2],[1,0,0,0,1,0,5,5,6] >;

C2xC32:S4 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes S_4
% in TeX

G:=Group("C2xC3^2:S4");
// GroupNames label

G:=SmallGroup(432,538);
// by ID

G=gap.SmallGroup(432,538);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,170,675,353,9077,2287,5298,3989]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=c^6=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^4*c,e*b*e=b^2*c^3,d*c*d^-1=b^3*c,e*c*e=b^3*c^4,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<